close
تبلیغات در اینترنت
اموزش درس دایره ریاضی سوم راهنمایی هراه نکات المژیادی و تست
loading...

هم کلاسی سلام

.:: زاویه و دایره ::. دایره: (circle) مجموعه نقاطی از صفحه که فاصله ی آن از یک نقطه به نام مرکز برابر باشند ، دایره نامیده می شود. دایره ی c به مرکز o و شعاع R را با نماد نشان می دهیم . وتر دایره :(circle chord) پاره خطی که دو نقطه از محیط دایره را به هم وصل می کند . هر دایره بیشمار وتر دارد . مانند وتر…

اموزش درس دایره ریاضی سوم راهنمایی هراه نکات المژیادی و تست

محمد عارف بازدید : 1191 شنبه 13 اسفند 1390 نظرات ()

.:: زاویه و دایره ::.

دایره: (circle)

مجموعه نقاطی از صفحه که فاصله ی آن از یک نقطه به نام مرکز برابر باشند ، دایره نامیده می شود.

دایره ی c به مرکز o و شعاع R را با نماد نشان می دهیم .

وتر دایره :(circle chord) پاره خطی که دو نقطه از محیط دایره را به هم وصل می کند . هر دایره بیشمار وتر دارد . مانند وتر های AB و CD در دایره ی C .

قطر دایره:(circle axis) بزرگترین وتر در هر دایره را قطر می نامند . قطر وتر ی از دایره است که از مرکز می گذرد مانند قطر MN در دایره ی C.

کمان دایره :(circle arc) قسمتی از محیط دایره را می گویند که به دو نقطه روی محیط دایره محدود شده باشد. اگر دو نقطه ی A و B را روی دایره C در نظر بگیریم دو کمان پدید می آید ، کمان کوچکتر را به صورت و کمان بزرگتر را به صورت می خوانیم .

í نقطه و دایره : نقطه و دایره نسبت به هم 3 وضعیت دارند :1 نقطه داخل دایره است. 2 نقطه روی دایره است. 3 نقطه خارج دایره است .

í وضع یک خط و یک دایره نسبت به هم:

خط و دایره نسبت به هم سه حالت دارند:

1. خط خارج دایره است که در این صورت فاصله ی خط تا مرکز دایره از شعاع بزرگتر است. یعنی d<r

2.خط بر دایره مماس است.که در این صورت فاصله ی خط تا مرکز دایره با شعاع مساوی است . یعنی d = r

3.خط دایره را در دو نقطه قطع می کند که در این صورت فاصله ی خط تا مرکز دایره از شعاع کو چکتر است.

یعنی: d < r

خط و دایره

í زاویه و دایره:

زاویه ی مرکزی:زاویه ای که رأس آن مرکز دایره باشد زاویه ی مرکزی نامیده می شود.

در شکل مقابل زاویه ی AOB یک زاویه مرکزی است و کمان AB کمان مقابل آن می باشد.

نکته: اندازه ی زاویه ی مرکزی با کمان مقابلش مساوی است.

زاویه ی مرکزی در دایره:

زاویه ی محاطی: زاویه ی محاطی زاویه ای است که رأس آن روی دایره و اضلاع آن دو وتر از همان دایره باشند .

در شکل مقابل زاویه ی یک زاویه ی محاطی است و کمان BC ، کمان مقابل آن می باشد.

نکته :اندازه ی زاویه ی محاطی نصف کمان مقابل آن است.

زاویه ی محاطی در دایره :

زاویه ی ظلّی : هر زاویه ای که رأسش روی دایره و یک ضلع آن وتری از دایره و ضلع دیگرش بر دایره مماس باشد ، زاویه ی ظّلی نامیده می شود.

در شکل مقابل یک زاویه ی ظّلی و کمان AB کمان مقابل به زاویه ی ظّلی A می باشد.

نکته : اندازه ی زاویه ی ظّلی نصف کمان مقابل آن است.

زاویه ی ظّلی

í مثلث و دایره :

دایره ی محاطی مثلث :

3 نیمساز زوایای داخلی مثلث یکدیگر را در یک نقطه مانند o قطع می کنند.می دانیم فاصله ی نقطه ی o از 3 ضلع مثلث به یک فاصله است (با توجه به مبحث تساوی مثلث ها)؛ یعنی اگر عمودی ها ی OK ،OH و OE را بر اضلاع مثلث فرود آوریم ،داریم : OE=OH=OK

پس اگر دایره ای به مرکز O و شعاع OH رسم کنیم ، این دایره در K و H و E بر سه ضلع مثلث مماس خواهد بود .

این دایره ، دایره ی محاطی مثلث نام دارد . مرکز دایره ی محاطی مثلث نقطه ی تلاقی نیمساز های زوایای داخلی آن است.

محاسبه ی شعاع دایره ی محاطی مثلث:

شعاع دایره ی محاطی مثلث را با حرف r نشان می دهیم .

دایره ی محیطی مثلث:

سه عمود منصف اضلاع یک مثلث بر یک نقطه مانند O می گذرند. می دانیم فاصله ی O از سه رأس مثلث به یک فاصله است، یعنی OA=OB=OC . (با توجه به مبحث تساوی مثلث ها)

اگر به مرکز O و شعاع مثلأ OA دایره ای رسم کنیم این دایره بر دو رأس دیگر مثلث نیز عبور خواهد کرد . به این دایره ، دایره ی محیطی مثلث می گویند .

مرکز دایره ی محیطی مثلث نقطه ی تقاطع عمود منصف های اضلاع آن است.

محاسبه ی شعاع دایره ی محیطی مثلث:

شعاع دایره ی محیطی مثلث را با حرف R نشان می دهند . در شکل زیر به دو مثلث توجه کنید ؛ این دو مثلث با هم متشابهند .

تناسب اضلاع متناظر دو مثلث را می نویسیم:

لذا در هر مثلث حاصل ضرب دو ضلع برابر است با : قطر دایره ی محیطی در ارتفاع وارد بر ضلع سوم یعنی :

از طرفی می دانیم مساحت مثلث برابر است با :

حالا با توجه به رابطه ی (1) و (2) می توان نوشت:

دایره و چند ضلعی های منتظم :

چند ضلعی منتظم: چند ضلعی که تمام اضلاع آن با هم و همه ی زاویه هایش نیز با هم مساوی باشند یک چند ضلعی منتظم نامیده می شود . مانند مربع که یک چهار ضلعی منتظم است.

رسم چند ضلعی منتظم:

برای رسم یک n ضلعی منتظم کافی است دایره ای را به n قسمت مساوی تقسیم کرده و نقاط تقسیم را به هم وصل کنیم .

تقسیم دایره به n قسمت مساوی به صورت زیر انجام می شود:

1. یک زاویه ی مرکزی به اندازه ی رسم کنیم .

2.وتر نظیر این زاویه مرکزی را می کشیم .

3. پرگار را به اندازه ی این وتر باز کرده و پشت سر هم کمان های متوالی می زنیم تا دایره به n قسمت مساوی تقسیم شود .

مثال:

چهار ضلعی منتظم:

پنج ضلعی منتظم:

شش ضلعی منتظم:

بازی و ریاضی :

ساخت چند ضلعی های منتظم با گره زدن کاغذ

پنج ضلعی منتظم:

نوار بلند کاغذی آماده کنید که عرض یکسان داشته باشد.

برای ساخت یک پنج ضلعی منتظم با این نوار به تر تیب زیر عمل کنید:

1. دو سر نوار را بگیرید و با آن یک گره ساده بزنید

مانند شکل زیر:

2. گره را به آرامی سفت کنید و رد های کاغذ را صاف کنید.

3. نوار های اضافی را ببرید ،پنج ضلعی منتظم بوجود می آید.

4. گره را باز کنید و ذوزنقه های تشکیل شده را با هم بررسی و مقایسه کنید.

هفت ضلعی منتظم:

نوار بلند کاغذی آماده کنید که عرض یکسان داشته باشد.

برای ساخت یک هفت ضلعی منتظم با این نوار به ترتیب زیر عمل کنید:

1. دو سر نوار را بگیرید و با آن یک گره ساده بزنید. (مانند پنج ضلعی منتظم)

2. گره را سفت نکنید و وسط گره (ناحیه ی 1) را در نظر داشته باشید.

3. مجددأ یک سر نوار را به قصد زدن گره دوم زیر سر دیگر برده ،و از ناحیه 1 (وسط گره اول) عبور دهید.

4. گره را به آرامی سفت کنید و رد های کاغذ را صاف کنید.

5. نوار های اضافی را ببرید ،هفت ضلعی منتظم بوجود می آید.

1- در شکل مقابل زاویه ی از رابطه ی زیر بدست می آید . این زاویه از برخورد دو وتر دلخواه در داخل دایره بوجود آمده است.

2- در شکل مقابل زاویه ی از رابطه ی زیر بدست می آید . این زاویه از برخورد امتداد دو وتر دلخواه در خارج دایره بوجود آمده است.

3- در شکل مقابل زاویه ی از رابطه ی زیر بدست می آید :

4-

5- شعاع دایره ی محیطی مثلث متساوی الاضلاع دو برابر شعاع دایره ی محاطی آن مثلث است.

6- مرکز دایره ی محیطی مثلث قائم الزاویه وسط وتر و شعاع آن نصف وتر است.

7- مساحت مثلثی به اضلاع c , b , a از رابطه ی زیر بدست می آید:

8- سهم در چند ضلعی منتظم پاره خطی است که از مرکز چند ضلعی به ضلع آن عمود می شود.

مانند OA در شش ضلعی منتظم شکل مقابل.

برای بدست آوردن مساحت یک n ضلعی منتظم از رابطه ی زیر استفاده می شود.

9- برای یک n ضلعی منتظم زاویه ی داخلی از رابطه ی و زاویه ی مرکزی از رابطه ی بدست می آید.

10- مجموع زوایای داخلی یک n ضلعی از رابطه ی مقابل بدست می آید: 180× (n - ۲)

مثال ها

در هر یک از شکل های زیر مقادیر مجهول را بیابید.

در تمامی شکل ها O مرکز دایره است.

تصویر 1:

حل:


تصویر 2:

شکل کمکی:

حل:


تصویر 3:

شکل های کمکی :

حل:


تصویر 4:

حل:


تصویر 5:

شکل های کمکی:

حل:


تصویر 6:

حل:


تصویر 7:

هشت ضلعی منتظم است.

حل:


تصویر8:

شکل های کمکی:

حل:


تصویر9:

حل:


تصویر10:

شکل های کمکی:

حل:


تصویر 11:

شکل های کمکی:

حل:


تصویر 12:

حل:


تصویر 13:

حل:


þ تست1 :

در شکل مقابل وتر های AB و CD بر هم عمودند . اندازه ی کمان کدام است؟

د) ˚110

ج) ˚120

ب) ˚55

الف) ˚60


þ تست2 :

در شکل مقابل چند درجه است؟

د) ˚140

ج) ˚220

ب) ˚120

الف) ˚70


þ تست3 :

در شکل مقابل y چند درجه است؟

ب) ˚120

الف) ˚145

د) ˚100

ج) ˚108


þ تست4 :

فاصله ی خط d از مرکز دایره ای برابر 5cm است . اگر قطر دایره دو برابر این فاصله باشد ، وضعیت خط و دایره نسبت به هم کدام است؟

ب)خط و دایره متقاطع اند.

الف)خط دایره را قطع نمی کند.

د)خط ودایره دو نقطه مشترک دارند .

ج:خط بر دایره مماس است.


þ تست5 :

مثلث قائم الزاویه ای به اضلاع 6 و 8 و 10 مفروض است. دایره ای رسم کرده ایم که از رأ س های مثلث می گذرد. شعاع دایره چقدر است؟

د) 10

ج)

ب)

الف) 5


þ تست6 :

اندازه ی شعاع دایره ی محاطی مثلث متساوی الاضلاعی به ضلع 6cm چقدر است؟

د)

ج)

مطالب مرتبط
ارسال نظر برای این مطلب

نام
ایمیل (منتشر نمی‌شود) (لازم)
وبسایت
:) :( ;) :D ;)) :X :? :P :* =(( :O @};- :B /:) :S
نظر خصوصی
مشخصات شما ذخیره شود ؟ [حذف مشخصات] [شکلک ها]
کد امنیتیرفرش کد امنیتی
تبلیغات
Rozblog.com رز بلاگ - متفاوت ترين سرويس سایت ساز
درباره ما
Profile Pic
سلام عزیزان به وبلاگ من خوش اومدین حتما عضو بشید تا از خدمات سایت بهره مند شوید
اطلاعات کاربری
نام کاربری :
رمز عبور :
  • فراموشی رمز عبور؟
  • پیوندهای روزانه
    آمار سایت
  • کل مطالب : 64
  • کل نظرات : 46
  • افراد آنلاین : 1
  • تعداد اعضا : 54
  • آی پی امروز : 13
  • آی پی دیروز : 17
  • بازدید امروز : 96
  • باردید دیروز : 62
  • گوگل امروز : 0
  • گوگل دیروز : 0
  • بازدید هفته : 244
  • بازدید ماه : 604
  • بازدید سال : 798
  • بازدید کلی : 44,899
  • کدهای اختصاصی